
Week 14 - Monday

 What did we talk about last time?
 JUnit test examples

 Final exam will be held virtually:
 Monday, April 27, 2020
 10:15 a.m. to 12:15 p.m.

 There will be multiple choice, short answer, and programming
questions

 I recommend that you use an editor like Notepad++ to write
your answers, since Blackboard doesn't play nice with tabs

 I don't recommend that you use Eclipse, since the syntax
highlighting features will make you doubt yourself and try to
get things perfect when getting them done is more important

 Primitive types: byte, char, short, int, long, float,
double, boolean

 Operations: +, -, *, /, %, and shortcut versions
 Case sensitivity
 White space doesn't (usually) matter
 Three kinds of comments
 Arrays

 Selection
 if
 switch

 Loops
 while
 do-while
 for
 Enhanced for

 break and continue: don't use them

 Used to iterate over the contents of an array (or other collection of
data)

 Similar to for loops in Python
 The typemust match the elements of the array (or other

collection)
 Syntax:
for(type value : array) {
// Statements
// Braces not needed for single statement

}

 Static methods do work but are not connected to objects
 Reference types are arrows to objects
 More than one arrow can point at a single object

 Objects contain
 Members
 Methods

 Objects should be compared with the equals() method instead
of ==

 Notable exception: comparing objects with == can make sense
when working with a linked list, since we might care whether or
not two references point at the same thing

 In addition to holding static methods, classes are template for
objects

 Members (data) are usually private
 Methods (actions) are usually public
 Special kinds of methods:
 Constructors specify how an object should be initialized
 Accessors (getters) specify how an object can give back information
 Mutators (setters) specify how an object changes data inside itself

 Static variables live in the class, not in an object (and shouldn't be
used)
 Unless they are constant (final)

 An enum is a special kind of class that has pre-defined constant objects
 These objects are intended to represent a fixed collection of named things:

 Individual days can be referenced like static variables: Day.MONDAY or
Day.FRIDAY

 Since enum values are constants, it's convention to name them in ALL CAPS
 In addition to int, char, and String values, enums can be used for cases in
switch statements

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY

}

 To organize classes, they are often inside of packages
 This approach allows to tell the difference between two different

classes with the same name that are in different libraries
 Packages correspond to folders with the same names
 Most packages are inside of other packages
 The default package (no package) should not be used for

professional programming
 To use classes from other packages, import them:
 import java.util.Scanner; or
 import java.util.*;

 An interface is a set of methods which a class must have
 Implementing an interface means making a promise to

define each of the listed methods
 It can do what it wants inside the body of each method, but it

must have them to compile
 A class can implement as many interfaces as it wants

 An interface looks a lot like a class, but all its methods are
generally empty

 Interfaces have no members except for (static final)
constants

public interface Guitarist {
void strumChord(Chord chord);
void playMelody(Melody notes);

}

 Many interfaces only have a single method
 Consider the following example:

 To implement this interface, a class must:
 State that it implements the interface
 Have a public, non-static method called makeNoise() that takes

no parameters and returns a String

public interface NoiseMaker {
String makeNoise();

}

 Here are classes that implement NoiseMaker:

public class Pig implements NoiseMaker {
public String makeNoise() {

return "Grunt!";
}

}
public class Explosion implements NoiseMaker {

public String makeNoise() {
return "BOOM!";

}
}
public class Wind implements NoiseMaker {

public String makeNoise() {
return "Woosh!";

}
}

 As of Java 8, interfaces can also have default methods
 The interface expects you to implement these methods, but if

you don't, a default implementation is provided

public interface Punchable {
default boolean wantsPunch() { // Default

return false;
}
void getPunched(Punch punch); // Abstract

}

 Like classes, you can use inheritance to extend an interface
 When you do so, the child interface gets all of the required

methods from the parent interface
 It can also reference the constants and static methods within

the parent interface
 Consider the following interface:

public interface Defender {
boolean blockWithShield(Attack attack);

}

 We can make a child interface from Defender using the
extends keyword

 This interface contains the blockWithShield() abstract
method as well as the parryWithKatana() abstract
method

 A class that implements this interface must have both

public interface NinjaDefender extends Defender {
boolean parryWithKatana(Attack attack);

}

 The idea of inheritance is to take one class and generate a
child class

 This child class has everything that the parent class has
(members and methods)

 But you can also add more functionality to the child
 The child can be considered to be a specialized version of the

parent

 Java respects the subclass relationship
 If you have a Vehicle reference, you can store a Car object

in that reference
 A subclass (in this case a Car) is a more specific version of the

superclass (Vehicle)
 For this reason, you can use a Car anywhere you can use a
Vehicle

 You cannot use a Vehicle anywhere you would use a Car

 We use the extends keyword to create a subclass from a
superclass

 A Car can do everything that a Vehicle can, plus more

public class Car extends Vehicle {
private String model;
public Car(String s) { model = s; }

public String getModel() { return model; }

public void startEngine() {
System.out.println("Vrooooom!");

}
}

 As long as Car is a subclass of Vehicle, we can store a Car
in a Vehicle reference

 Even in an array is fine

 Storing a Vehicle into a Car doesn't work

Vehicle v = new Car("Lancer Evolution"); // okay

Vehicle[] vehicles = new Vehicle[100];
for(int i = 0; i < vehicles.length; i++)
vehicles[i] = new RocketShip(); // cool

Car c = new Vehicle(); // gives error

 A child class has to create a version of the parent class "inside"
itself

 Consequently, the first line of a child class constructor is
reserved for a call to the parent constructor

 If the parent has a default constructor (with no arguments), no
call is necessary

 Otherwise, a call to the parent constructor must be made by
using the keyword super, followed by parentheses and the
arguments passed to the parent constructor

 The FoieGras class extends Food and consequently must call the
Food constructor as the first thing in its constructor

 The FoieGras constructor can be completely different from the Food
constructor as long as it calls the Food constructor correctly

public class FoieGras extends Food {
private int grams;

public FoieGras(int grams) {
super("Foie Gras", 462*grams/100);
this.grams = grams;

}
}

 In addition to public and private modifiers, the protected
keyword is meaningful in the context of inheritance
 Methods and members that are public can be accessed by any code
 Methods and members that are private can only be accessed by

methods from the same class
 Methods and members that are protected can be accessed by code

in the same package and by methods of any classes that inherit from the
class

 Hard-core OOP people dislike the protected keyword since it
allows child classes to fiddle with stuff that they probably
shouldn't

 Sometimes you want to do more than add
 You want to change a method to do something different
 You can write a method in a child class that has the same

name as a method in a parent class
 The child version of the method will always get called
 This is called overriding a method

 All normal Java methods use dynamic binding
 This means that the most up-to-date version of a method is

always called
 It also means that the method called by a reference is often not

known until run-time
 Consider a class Wombat which extends Marsupial which

extends Object
 Let's say that Wombat, Marsupial, and Object all

implement the toString() method

 Every object has a copy of its parent object inside (which has its
parent inside, and so on)

 All methods from the class and parents are available, but the
outermost methods are always chosen
 If a class overrides its parent's method, you always get the overridden

method

Wombat

toString()
getName()

Marsupial

toString()
hasPouch()

Object

toString()

 As you know, the final keyword is used to mark both
member variables and local variables as constant

 final can be applied to methods and classes as well
 A final method cannot be overridden by a child class
 A final class cannot be extended at all
 String is an example of a final class
 You can't extend String to make your own special kind of String!
 We want String behavior to be totally consistent

 All methods in interfaces are, by default, abstract
 An abstract method is only the signature of a method, not its

definition
 Abstract methods end with a semicolon instead of a body

defining what they do
 Any class that wants to implement the interface must

complete all its abstract methods
 You can put abstract methods in classes, but
 The method must be marked with the abstract keyword
 The class must be abstract too

 An abstract class is one that can't be instantiated
 It's intended to be the basis for inherited classes
 It's kind of like an interface in that it can contain abstract

methods
 But you can put regular methods in an abstract class
 And member variables!

 An abstract class gives you a framework but not all of the
implementation

 The Polygon abstract class makes a foundation for polygons:

public abstract class Polygon {
private final int sides;
public Polygon(int sides) {

this.sides = sides;
}
public final int getSides() {

return sides;
}
public abstract double getArea();
public abstract double getPerimeter();

}

 Sometimes it's useful to know the true type of an object
 You can use the instanceof keyword to see if the type of

an object inherits from a particular class
 Syntax (produces a boolean):
 object instanceof Class

 An instanceof is almost always in an if statement:

Object object = getRandomObject();
if(object instanceof Hurricane)
System.out.println("You can call me slurricane.");

 instanceof doesn't tell you if an object is a particular class
 Instead, it tells you if it is that class or inherits from it
 Consider an object of type Whiskey, which inherits from Alcohol,

which inherits from Beverage (which inherits from Object)
Object object = new Whiskey();
if(object instanceof Whiskey) // true
System.out.println("Whiskey!");

if(object instanceof Alcohol) // true
System.out.println("Alcohol!");

if(object instanceof Beverage) // true
System.out.println("Beverage!");

if(object instanceof Object) // true
System.out.println("Object!");

if(object instanceof String) // false
System.out.println("String?");

 For situations where you need to know if the type of an object
matches exactly, you can use its getClass()method

 This returns a Class object, which you can compare using == to
the name of a type followed by .class

Object object = new Whiskey();
if(object.getClass() == Whiskey.class) // true
System.out.println("Whiskey!");

if(object.getClass() == Alcohol.class) // false
System.out.println("Alcohol!");

if(object.getClass() == Beverage.class) // false
System.out.println("Beverage!");

if(object.getClass() == Object.class) // false
System.out.println("Object!");

 Instead of checking every method, Java has a general way of
handling errors (and other exceptional situations)

 The name for this system is exception handling
 When an error happens, code will throw an exception
 Throwing an exception usually means something went wrong

 A special block of code catches the exception
 When you catch an exception, you can
 Deal with the problem and move on
 Throw the same (or a new) exception and make someone else deal

with it

 The risky() method has a chance of destroying the world
 If the world is destroyed, execution will jump into the catch block

try {
System.out.println("About to do something risky!");
risky();
System.out.println("That was worth it!");

}
catch(WorldDestroyedException e) {
System.out.println("Whoops. We destroyed the world.");

}

 If a some code can cause many different exceptions, you can use multiple catches to handle them
 When a problem happens, execution will jump to the first catch that matches
try {

useNumber(100 / divisor);
getHoney();
stayUpAllNight();

}
catch(ArithmeticException e) {

System.out.println("We divided by zero!");
}
catch(BeeStingException e) {

if(allergic)
System.out.println("We're dying!");

else
System.out.println("Youch!");

}
catch(ExhaustedException e) {

System.out.println("*YAWN*");
}

 If an exception is thrown, the remaining code inside a try
won't be executed

 If an exception isn't thrown, none of the catch blocks will be
executed

 If you want code that is executed no matter what, it can be
put in a finally block after all the catch blocks

 finally blocks are often used to do clean-up so we're sure
it gets done
 Things like closing files or network connections

 If a method doesn't want to catch a (checked) exception, it must
be marked as throwing that exception with the throws keyword

 This pet()method doesn't handle a GoatBiteException
and thus must use the throws keyword to warn other code that
it could throw a GoatBiteException

void pet(Goat goat) throws GoatBiteException {
goat.touch(); // can throw GoatBiteException

}

 Exceptions are classes like any other in Java
 They can have members, methods, and constructors
 All you need to do is make a class that extends Exception, the

base class for all exceptions

 That's it.
 Although it makes them long, it's good style to put the word
Exception at the end of any exception class name

public class SimpleException extends Exception {
}

 The throw keyword is used to start the exception handling
process

 You simply type throw and then the exception object that you
want to throw

 Most of the time, you'll create a new exception object on the spot
 Why would you have one lying around?

 Don't confuse it with the throws keyword!

throw new CardiacArrestException();

 Here's a method that finds the integer square root of an integer

 If value is negative, an IllegalArgumentExceptionwill
be thrown

public static int squareRoot(int value) {
if(value < 0)

throw new IllegalArgumentException("Negative value!");
int root = 0;
while(root*root <= value) {

++root;
}
return root - 1;

}

 Because a parent catchwill catch a child, you have to organize
multiple catch blocks from most specific to most general:

try {
dangerousMethod();

}
catch(FusionNuclearExplosionException e) {

System.out.println("Fusion!");
}
catch(NuclearExplosionException e) {

System.out.println("Nuclear!");
}
catch(ExplosionException e) {

System.out.println("Explosion!");
}
catch(Exception e) { // Don't do this!

System.out.println("Some arbitrary exception!");
}

 Write a LonelyGoatherd class that implements the
following interface with a yodel() method that returns the
lyrics concatenated with itself repetitions times

 For example, values of "Yodelay!" and 3 would return:
 "Yodelay!Yodelay!Yodelay!"

public interface Yodelable {
String yodel(String lyrics, int repetitions);

}

 Write a (non-abstract) Salmon class that extends the Fish
class

 Its species name should be "salmon"
 Implement the swim() method however you want
public abstract class Fish {
private String species;
public Fish(String species) {

this.species = species;
}
public String getSpecies() {

return species;
}
public abstract String swim();

}

 What would the following code print out?
try {

System.out.println("Let's eat some week-old scallops!");
if(Math.random() < .5)

throw new FoodPoisoningException();
System.out.println("That went great!");

}
catch(NullPointerException e) {

System.out.println("Null!");
}
catch(FoodPoisoningException e) {

System.out.println("Barf!");
}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Index!");
}
finally {

System.out.println("Tomorrow is another day.");
}

 We can imagine a hierarchy of inheritance starting with a Person with the
following members:
 Name (final)
 Age

 Student extends Person and adds:
 Major
 GPA

 Politician extends Person and adds:
 Political party

 OtterbeinStudent extends Student and adds:
 ID number (final)

 Members should have getters and setters as appropriate
 All classes should override the toString() and equals() methods

 Review up to Exam 2
 GUIs
 Recursion
 Files
 Networking

 Finish Project 4
 Due Friday

 Review chapters 7, 15, 19-21
 Look over labs, quizzes, and projects to prepare
 Final Exam:
 Monday, April 27, 2020
 10:15 a.m. to 12:15 p.m.

	COMP 2000
	Last time
	Questions?
	Project 4
	Final exam
	Review
	Java basics
	Control structures
	Enhanced for loops
	Objects and methods
	Classes
	Enums
	Packages
	Interfaces
	Interface basics
	Interface definition
	Interfaces
	Example classes
	Default methods
	Interfaces can extend other interfaces
	Child interface
	Inheritance
	Inheritance
	Subclass relationship
	Extending a superclass
	Subclass example
	Constructors
	FoieGras class
	protected keyword
	Adding to existing classes is nice…
	Dynamic binding
	How to think about inheritance
	The final keyword
	Abstract methods
	Abstract classes
	Abstract class example
	instanceof keyword
	More on instanceof
	getClass() method
	Exceptions
	Exceptions
	Catching an exception
	Multiple catch statements
	A finally block
	The throws keyword
	Creating an exception class
	throw keyword
	Exception throwing example
	Multiple catches with inheritance
	Practice
	Sample Question 1
	Sample Question 2
	Sample Question 3
	Extended programming practice
	Upcoming
	Next time…
	Reminders

