
Week 14 - Monday



 What did we talk about last time?
 JUnit test examples







 Final exam will be held virtually:
 Monday, April 27, 2020
 10:15 a.m. to 12:15 p.m.

 There will be multiple choice, short answer, and programming 
questions

 I recommend that you use an editor like Notepad++ to write 
your answers, since Blackboard doesn't play nice with tabs

 I don't recommend that you use Eclipse, since the syntax 
highlighting features will make you doubt yourself and try to 
get things perfect when getting them done is more important





 Primitive types: byte, char, short, int, long, float, 
double, boolean

 Operations: +, -, *, /, %, and shortcut versions
 Case sensitivity
 White space doesn't (usually) matter
 Three kinds of comments
 Arrays



 Selection
 if
 switch

 Loops
 while
 do-while
 for
 Enhanced for

 break and continue: don't use them



 Used to iterate over the contents of an array (or other collection of 
data)

 Similar to for loops in Python
 The typemust match the elements of the array (or other 

collection)
 Syntax:
for(type value : array) {
// Statements
// Braces not needed for single statement

}



 Static methods do work but are not connected to objects
 Reference types are arrows to objects
 More than one arrow can point at a single object

 Objects contain
 Members
 Methods

 Objects should be compared with the equals() method instead 
of ==

 Notable exception: comparing objects with == can make sense 
when working with a linked list, since we might care whether or 
not two references point at the same thing



 In addition to holding static methods, classes are template for 
objects

 Members (data) are usually private 
 Methods (actions) are usually public
 Special kinds of methods:
 Constructors specify how an object should be initialized
 Accessors (getters) specify how an object can give back information
 Mutators (setters) specify how an object changes data inside itself

 Static variables live in the class, not in an object (and shouldn't be 
used)
 Unless they are constant (final)



 An enum is a special kind of class that has pre-defined constant objects
 These objects are intended to represent a fixed collection of named things:

 Individual days can be referenced like static variables: Day.MONDAY or 
Day.FRIDAY

 Since enum values are constants, it's convention to name them in ALL CAPS
 In addition to int, char, and String values, enums can be used for cases in 
switch statements

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, 
SATURDAY

}



 To organize classes, they are often inside of packages
 This approach allows to tell the difference between two different 

classes with the same name that are in different libraries
 Packages correspond to folders with the same names
 Most packages are inside of other packages
 The default package (no package) should not be used for 

professional programming
 To use classes from other packages, import them:
 import java.util.Scanner; or
 import java.util.*;





 An interface is a set of methods which a class must have
 Implementing an interface means making a promise to 

define each of the listed methods
 It can do what it wants inside the body of each method, but it 

must have them to compile
 A class can implement as many interfaces as it wants



 An interface looks a lot like a class, but all its methods are 
generally empty

 Interfaces have no members except for (static final) 
constants

public interface Guitarist {
void strumChord(Chord chord);
void playMelody(Melody notes);

}



 Many interfaces only have a single method
 Consider the following example:

 To implement this interface, a class must:
 State that it implements the interface
 Have a public, non-static method called makeNoise() that takes 

no parameters and returns a String

public interface NoiseMaker {
String makeNoise();

}



 Here are classes that implement NoiseMaker:

public class Pig implements NoiseMaker {
public String makeNoise() {

return "Grunt!";
}

}
public class Explosion implements NoiseMaker {

public String makeNoise() {
return "BOOM!";

}
}
public class Wind implements NoiseMaker {

public String makeNoise() {
return "Woosh!";

}
}



 As of Java 8, interfaces can also have default methods
 The interface expects you to implement these methods, but if 

you don't, a default implementation is provided

public interface Punchable {
default boolean wantsPunch() { // Default

return false;
}
void getPunched(Punch punch); // Abstract

}



 Like classes, you can use inheritance to extend an interface
 When you do so, the child interface gets all of the required 

methods from the parent interface
 It can also reference the constants and static methods within 

the parent interface
 Consider the following interface:

public interface Defender {
boolean blockWithShield(Attack attack);

}



 We can make a child interface from Defender using the 
extends keyword

 This interface contains the blockWithShield() abstract 
method as well as the parryWithKatana() abstract 
method

 A class that implements this interface must have both

public interface NinjaDefender extends Defender {
boolean parryWithKatana(Attack attack);

}





 The idea of inheritance is to take one class and generate a 
child class

 This child class has everything that the parent class has 
(members and methods)

 But you can also add more functionality to the child
 The child can be considered to be a specialized version of the 

parent



 Java respects the subclass relationship
 If you have a Vehicle reference, you can store a Car object 

in that reference
 A subclass (in this case a Car) is a more specific version of the 

superclass (Vehicle)
 For this reason, you can use a Car anywhere you can use a 
Vehicle

 You cannot use a Vehicle anywhere you would use a Car



 We use the extends keyword to create a subclass from a 
superclass

 A Car can do everything that a Vehicle can, plus more

public class Car extends Vehicle {
private String model;
public Car(String s) { model = s; }

public String getModel() { return model; }

public void startEngine() {
System.out.println("Vrooooom!");

}
}



 As long as Car is a subclass of Vehicle, we can store a Car
in a Vehicle reference

 Even in an array is fine

 Storing a Vehicle into a Car doesn't work

Vehicle v = new Car("Lancer Evolution"); // okay

Vehicle[] vehicles = new Vehicle[100];
for( int i = 0; i < vehicles.length; i++ )
vehicles[i] = new RocketShip();  // cool

Car c = new Vehicle(); // gives error



 A child class has to create a version of the parent class "inside" 
itself

 Consequently, the first line of a child class constructor is 
reserved for a call to the parent constructor

 If the parent has a default constructor (with no arguments), no 
call is necessary

 Otherwise, a call to the parent constructor must be made by 
using the keyword super, followed by parentheses and the 
arguments passed to the parent constructor



 The FoieGras class extends Food and consequently must call the 
Food constructor as the first thing in its constructor

 The FoieGras constructor can be completely different from the Food
constructor as long as it calls the Food constructor correctly

public class FoieGras extends Food {
private int grams;

public FoieGras(int grams) {
super("Foie Gras", 462*grams/100);
this.grams = grams;

}
}



 In addition to public and private modifiers, the protected
keyword is meaningful in the context of inheritance
 Methods and members that are public can be accessed by any code
 Methods and members that are private can only be accessed by 

methods from the same class
 Methods and members that are protected can be accessed by code 

in the same package and by methods of any classes that inherit from the 
class

 Hard-core OOP people dislike the protected keyword since it 
allows child classes to fiddle with stuff that they probably 
shouldn't



 Sometimes you want to do more than add
 You want to change a method to do something different
 You can write a method in a child class that has the same 

name as a method in a parent class
 The child version of the method will always get called
 This is called overriding a method



 All normal Java methods use dynamic binding
 This means that the most up-to-date version of a method is 

always called
 It also means that the method called by a reference is often not 

known until run-time
 Consider a class Wombat which extends Marsupial which 

extends Object
 Let's say that Wombat, Marsupial, and Object all 

implement the toString() method



 Every object has a copy of its parent object inside (which has its 
parent inside, and so on)

 All methods from the class and parents are available, but the 
outermost methods are always chosen
 If a class overrides its parent's method, you always get the overridden 

method

Wombat

toString()
getName()

Marsupial

toString()
hasPouch()

Object

toString()



 As you know, the final keyword is used to mark both 
member variables and local variables as constant

 final can be applied to methods and classes as well
 A final method cannot be overridden by a child class
 A final class cannot be extended at all
 String is an example of a final class
 You can't extend String to make your own special kind of String!
 We want String behavior to be totally consistent



 All  methods in interfaces are, by default, abstract
 An abstract method is only the signature of a method, not its 

definition
 Abstract methods end with a semicolon instead of a body 

defining what they do
 Any class that wants to implement the interface must 

complete all its abstract methods
 You can put abstract methods in classes, but
 The method must be marked with the abstract keyword
 The class must be abstract too



 An abstract class is one that can't be instantiated
 It's intended to be the basis for inherited classes
 It's kind of like an interface in that it can contain abstract 

methods
 But you can put regular methods in an abstract class
 And member variables!

 An abstract class gives you a framework but not all of the 
implementation



 The Polygon abstract class makes a foundation for polygons:

public abstract class Polygon {
private final int sides;
public Polygon(int sides) {

this.sides = sides;
}
public final int getSides() {

return sides;
}
public abstract double getArea();
public abstract double getPerimeter();

}



 Sometimes it's useful to know the true type of an object
 You can use the instanceof keyword to see if the type of 

an object inherits from a particular class
 Syntax (produces a boolean):
 object instanceof Class

 An instanceof is almost always in an if statement:

Object object = getRandomObject();
if(object instanceof Hurricane)
System.out.println("You can call me slurricane.");



 instanceof doesn't tell you if an object is a particular class
 Instead, it tells you if it is that class or inherits from it
 Consider an object of type Whiskey, which inherits from Alcohol, 

which inherits from Beverage (which inherits from Object)
Object object = new Whiskey();
if(object instanceof Whiskey) // true
System.out.println("Whiskey!");

if(object instanceof Alcohol) // true
System.out.println("Alcohol!");

if(object instanceof Beverage) // true
System.out.println("Beverage!");

if(object instanceof Object) // true
System.out.println("Object!");

if(object instanceof String) // false
System.out.println("String?");



 For situations where you need to know if the type of an object 
matches exactly, you can use its getClass()method

 This returns a Class object, which you can compare using == to 
the name of a type followed by .class

Object object = new Whiskey();
if(object.getClass() == Whiskey.class) // true
System.out.println("Whiskey!");

if(object.getClass() == Alcohol.class) // false
System.out.println("Alcohol!");

if(object.getClass() == Beverage.class) // false
System.out.println("Beverage!");

if(object.getClass() == Object.class) // false
System.out.println("Object!");





 Instead of checking every method, Java has a general way of 
handling errors (and other exceptional situations)

 The name for this system is exception handling
 When an error happens, code will throw an exception
 Throwing an exception usually means something went wrong

 A special block of code catches the exception
 When you catch an exception, you can
 Deal with the problem and move on
 Throw the same (or a new) exception and make someone else deal 

with it



 The risky() method has a chance of destroying the world
 If the world is destroyed, execution will jump into the catch block

try {
System.out.println("About to do something risky!");
risky();
System.out.println("That was worth it!");

}
catch(WorldDestroyedException e) {
System.out.println("Whoops. We destroyed the world.");

}



 If a some code can cause many different exceptions, you can use multiple catches to handle them
 When a problem happens, execution will jump to the first catch that matches
try {

useNumber(100 / divisor);
getHoney();
stayUpAllNight();

}
catch(ArithmeticException e) {

System.out.println("We divided by zero!");
}
catch(BeeStingException e) {

if(allergic)
System.out.println("We're dying!");

else
System.out.println("Youch!");

}
catch(ExhaustedException e) {

System.out.println("*YAWN*");
}



 If an exception is thrown, the remaining code inside a try
won't be executed

 If an exception isn't thrown, none of the catch blocks will be 
executed

 If you want code that is executed no matter what, it can be 
put in a finally block after all the catch blocks

 finally blocks are often used to do clean-up so we're sure 
it gets done
 Things like closing files or network connections



 If a method doesn't want to catch a (checked) exception, it must 
be marked as throwing that exception with the throws keyword

 This pet()method doesn't handle a GoatBiteException
and thus must use the throws keyword to warn other code that 
it could throw a GoatBiteException

void pet(Goat goat) throws GoatBiteException {
goat.touch(); // can throw GoatBiteException

}



 Exceptions are classes like any other in Java
 They can have members, methods, and constructors
 All you need to do is make a class that extends Exception, the 

base class for all exceptions

 That's it.
 Although it makes them long, it's good style to put the word 
Exception at the end of any exception class name

public class SimpleException extends Exception {
}



 The throw keyword is used to start the exception handling 
process

 You simply type throw and then the exception object that you 
want to throw

 Most of the time, you'll create a new exception object on the spot
 Why would you have one lying around?

 Don't confuse it with the throws keyword!

throw new CardiacArrestException();



 Here's a method that finds the integer square root of an integer

 If value is negative, an IllegalArgumentExceptionwill 
be thrown

public static int squareRoot(int value) {
if(value < 0)

throw new IllegalArgumentException("Negative value!");
int root = 0;
while(root*root <= value) {

++root;
}
return root - 1;

}



 Because a parent catchwill catch a child, you have to organize 
multiple catch blocks from most specific to most general:

try { 
dangerousMethod();

}
catch(FusionNuclearExplosionException e) {

System.out.println("Fusion!");
}
catch(NuclearExplosionException e) {

System.out.println("Nuclear!");
}
catch(ExplosionException e) {

System.out.println("Explosion!");
}
catch(Exception e) { // Don't do this!

System.out.println("Some arbitrary exception!");
}





 Write a LonelyGoatherd class that implements the 
following interface with a yodel() method that returns the 
lyrics concatenated with itself repetitions times

 For example, values of "Yodelay!" and 3 would return:
 "Yodelay!Yodelay!Yodelay!"

public interface Yodelable { 
String yodel(String lyrics, int repetitions);

}



 Write a (non-abstract) Salmon class that extends the Fish
class

 Its species name should be "salmon"
 Implement the swim() method however you want
public abstract class Fish { 
private String species;
public Fish(String species) {

this.species = species;
}
public String getSpecies() {

return species;
}
public abstract String swim();

}



 What would the following code print out?
try { 

System.out.println("Let's eat some week-old scallops!");
if(Math.random() < .5)

throw new FoodPoisoningException();
System.out.println("That went great!");

}
catch(NullPointerException e) {

System.out.println("Null!");
}
catch(FoodPoisoningException e) {

System.out.println("Barf!");
}
catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Index!");
}
finally {

System.out.println("Tomorrow is another day.");
}



 We can imagine a hierarchy of inheritance starting with a Person with the 
following members:
 Name (final)
 Age

 Student extends Person and adds:
 Major
 GPA

 Politician extends Person and adds:
 Political party

 OtterbeinStudent extends Student and adds:
 ID number (final)

 Members should have getters and setters as appropriate
 All classes should override the toString() and equals() methods





 Review up to Exam 2
 GUIs
 Recursion
 Files
 Networking



 Finish Project 4
 Due Friday

 Review chapters 7, 15, 19-21
 Look over labs, quizzes, and projects to prepare
 Final Exam:
 Monday, April 27, 2020
 10:15 a.m. to 12:15 p.m.
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